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Abstract: In this article we provide a mathematical frame to the generation of class
taxonomies suggested by Hébert in his analysis of the poem <<Quelle affaire!>>
(‘A Sorry Business!’) by Gilles Vigneault (b. 1928) as well as a formalization of
the structure of semic isotopies in his reading of The golden ship by Émile Nelligan
(1879–1941). We also examine the characteristics of inter- and intra-semic molecules
at work within Réne Magritte’s painting La clef des songes. Our mathematical frame
is Ganter and Wille’s extension of lattice theory called formal concept analysis, for
which we explore various formalisms and constructs that allow us to reason on
semic structures.

Keywords: François Rastier; Louis Hébert; semic analysis; analysis by classification;
formal concept analysis

1 Introduction

In Louis Hébert’s (2020) recent book An Introduction to Applied Semiotics, the author
explores structural semiotics from the perspective of the Paris school, in particular,
the groundwork laid by François Rastier (1997, 2016) and A. J. Greimas (1983, 1987).
Hébert provides well-considered introductions to a number of analytic methods, two
of whichwewill focus on in the article – namely, semic analysis and analysis through
classification. Both of these analytic methods are applied in numerous textual
contexts by Hébert, though both methods emerge from the subtle distinctions and
indirect definitions he gives in regard to classes, types, tokens and elements, in
addition to how Rastier and Greimas conceived of the relation between a seme,
isotopy and molecule. We begin by providing an overview of these terms and their
usage.
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1.1 Nomenclature

1.1.1 Semes

Greimas and Courtés (1979: 278) define a seme as the “‘minimal unit’ ofmeaning” that
is located on the “content plane” and corresponds to the pheme, the unit on the
“expression plane.” Like the constitution of phonemes as comprised of phemes, so
too, semes (which we denote /seme/) are the components of sememes. But a
seme itself is not autonomous or “atomistic,” instead it “exists only because of the
differential gap that opposes it to other semes” (Greimas and Courtés 1979: 278).
This theoretical position is as much indebted to Saussure (1983), as to Greimas’
recognition of how Levi-Strauss uses constitutive units for identifying signifieds
in myths in the following form:

A
non − A

≅
B

non − B
. (1)

Here, Greimas mirrors the notion of Levi-Strauss (1955) that “greater constitutive
units” can be framed in terms of “distinctive features.” That is to say that semes
themselves follow this type of structure of opposition and form what Greimas calls
semic categories (Greimas 1987: 16). These semic categories constitute the content
plane, and therefore are considered anterior to the individual semes themselves.
But there is also structure here too, which becomes fully formed and visualized
through the semiotic square (Greimas and Rastier 1968: 88) via the utility of the
relations of contradiction ( ), contrariety (4) and implication (⤏) between
semes:

(2)

What is fundamental then to the semiotic square is homologation, or what Greimas
and Courtés (1979: 144) consider “a rigorous formulation of reasoning by analogy”
that they denote as A: B: A′: B′, which is a generalization of the case of the semiotic
square as: s1 : s2 : :s̄1 :s̄2.
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In terms of classifying semic categories themselves, Greimas and Courtés offer
the following:

An examination of different semic categories allows us to distinguish several classes: (a)
figurative semes (or exteroceptive semes) are entities on the content plane of natural
languages, corresponding to elements of the expression plane of the semiotics of the natural
world, i.e., corresponding to the articulations of the sensory classes, to the perceptible qualities
of the world; (b) abstract semes (or interoceptive semes) are content entities that refer to no
exteriority, but which, on the contrary, are used to categorize the world and to give it meaning:
for example, the categories relation/term, object/process; (c) thymic semes (or proprioceptive
semes) connote semic microsystems according to the category euphoria/dysphoria, thus setting
them up as axiological systems. (Greimas and Courtés 1979: 279)

Hébert (2020: 145–146) also specifies that semes can be thought of as generic,
for which the corresponding sememe belongs to a semantic class as a semantic
paradigm, made up of sememes. There are three types of generic semes, those that
are microgeneric, mesogeneric and macrogeneric, for which all three correlate to
the three semantic classes that Rastier (1997) contextualizes within the domain of
his interpretive semantics. These semantic classes are taxemes, or the minimal
classes by which sememes are distinguished, domains, which are connected to
social contexts and human endeavors (e.g., dictionaries, scientific disciplines, etc.),
and dimensions, or those most general classes of oppositions (e.g., animate
vs. inanimate). Hébert give the example of the taxeme //tableware// and its three
sememes, each of which

contains themicrogeneric seme /tableware/ and is distinguished from the other sememes of the
same taxemeby a specific seme: /for piercing/ in ‘fork,’ /for cutting/ in ‘knife’ and /for containing/
in ‘spoon.’ Since this taxeme comes under the domain //food//, the three sememes also contain
the mesogeneric seme /food/. (Hébert 2020: 146)

Unlike a generic seme, the specific semes highlighted by Hébert (2020: 145) are ones
that distinguish a sememe from all other sememes of the same class. Hébert also
distinguishes between inherent semes and afferent semes. In the case of the former,
an inherent seme is one that belongs to a sememe’s type and is actualized by default
unless it is part of a virtualized structure. For example, ‘albino crow’ contains the
inherent seme /black/ in the type of the sememe ‘crow’ that is virtualized because of
‘albino.’ Thus the seme /white/ here is actualized. Hébert notes that afferent semes
are “present only in the sememe’s token, that is, only by contextual indication”
(Hébert 2020: 146). Thus if a seme is present in a context it is normally associated to,
it is actualized, and if it is missing it is virtualized.
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1.1.2 Isotopies and molecules

Greimas (1983: 81) describes an isotopy (denoted /isotopy/) as emerging from a
syntagm, that is, a grouping of at least two semic figures. As Hébert (2020: 147)
suggests, the sentence “I only use a knife for picking up peas” contains the
(mesogeneric) isotopy /food/, which indexes the sememes ‘knife’ and ‘peas.’ In
addition, it virtualizes the inherent specific seme /for cutting/ in ‘knife’ and actualizes
the afferent seme /for picking up/. An isotopy can thus be extended over “two
morphemes, two words, a paragraph, or a whole text” (Rastier 2016: 497). Thus given
a pair of generic isotopies, that is, ones that correspond to one of the three semantic
classes of taxeme, domain and dimension, we havewhat Rastier (1997: 35) identifies a
semic molecule, or “the recurrence of groupings of relatively stable specific semes.”
In Figure 1 we give Rastier’s diagram of the relation between these generic isotopies,
and how their constituent sememes are covered by a semic molecule.

1.1.3 Classes, types, tokens and elements

In Ronald Schleifer’s introduction to Greimas’ Structural Semantics, he describes the
assumption that for any process for which meaning is the translation of a sign into
another system of signs, there must be present a corresponding system of elements. It
should thus be possible to order these elements into classes (which we denote //class//)
according to their possibilities of combination in addition to constructing a “general
and exhaustive calculus of the possible combinations.” (Greimas 1983: xvi)

Hébert too describes a class as “not an individual entity, but rather an inventory
of one or more properties, optionally accompanied by rules for evaluating the
membership of the element.” (Hébert 2020: 11) For example, the semantic class //time
of the day// contains the signifieds ‘day’ and ‘night.’ Regarding the evaluation of

Figure 1: Rastier’s (1997: 36) diagram of the relation between themes, generic isotopies and a semic
molecule.
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membership to a semantic class, there is a similar notion in mathematical
set theories such as NBG (von Neumann-Bernays-Gödel set theory) and ZFC
(Zermelo-Fraenkel-Choice set theory) of the application of an axiom of choice on
non-empty sets that allows for the construction of equivalence classes to describe
elements from the union of these non-empty sets. In its most general form this
is expressed as a selector function on a collection X of nonempty sets, such that
for every set A ∈ X, f(A) is an element of A:

∀X ∅ ∉ X → ∃f : X →⋃X ∀ A ∈ X (f (A) ∈ A)[ ]. (3)

Such a selector function is what Hébert utilizes to distinguish between a genre of
poetry (as a type) and a collection of say ‘nature’ poems (as a class):

Strictly speaking, a type is not a class because rather than containing, or bringing together the
token units (the poems) governed by it, it generates them. We will distinguish between a class’s
extension (or enumeration) and its intension (or comprehension). (Hébert 2020: 11)

An element is a member of a particular class found in its extension and satisfies an
equivalence relation that is congruent to a selector function. Hébert considers a
token as “more or less [a] complete manifestation of a model or type, such as a
particular sonnet that is more or less regular” (Hébert 2020: 11). This causes some
confusion as to the difference between a token and an element, as the token seems to
not operate within the same set-theoretic universe of discourse as a class and its
choice function. Hébert draws attention to this fact when he describes typing as an
act of categorization in which “a token is subsumed under a type, related to it, and
recognized as its emanation or manifestation” (Hébert 2020: 11). This neatly mirrors
the difference between set theories and type theories in mathematics, where a type
theory is merely a set of rules of inference to describe any term as a type and allow
for operations and expected variable values while a set theory has both rules and
axioms, or logical statements that are accepted to be true.

1.2 Motivation

Our motivation for this article is what we perceive as parallelisms between the
analytic methods and conceptual frameworks of structural semiotics as espoused by
Greimas (1983), Rastier (1997) and Hébert (2007, 2020), to the mathematics of
extended lattice theory and “formal concept analysis” forwarded by Ganter and
Wille (1999). In order to ground the connection between these fields, we examine
the work of Hébert using his framework of “semic analysis” and “analysis by
classification,” which directly emerges from Rastier’s interpretive semantics and
Greimas’ notion of semic categories.
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For Wille (2005: 9), the mathematization of real-world concepts to discover
underlying structures and their accompanying semantics through lattice
constructions is a promising inter-disciplinary field because it has the potential
to “activate implicit conceptions and experiences concerning the underlying
domains.” Themathematization of concepts thus points towards subjective theories
which “contain implicit and explicit assumptions about objects and events, their
conditions and causes, their characteristics, relations and functions” (Wille 2005:
8). This approach neatly mirrors what Rastier (1997: 5) asserts about objectivity
in semiotic analysis, in which “meaning has no existence of its own beyond its
utterance and its interpretation” Marrone (2022: 22). similarly notes that semiotic
analysis ultimately seeks “to reconstruct the hierarchy of underlying layers” in
subjective experiences. In our estimation, this is facilitated directly through
imposed selector functions that seek to articulate, collate and render meaning in
texts or images via associations between elements of a set.

To these ends, we firstly provide amathematical frame to the generation of class
taxonomies suggested by Hébert (2007: 167–169) in his analysis of the poem <<Quelle
affaire!>> (“A Sorry Business!”) by Gilles Vigneault. We also provide a formalization
of the structure of semic isotopies through his reading of The golden ship by Émile
Nelligan (Hébert 2020: 157–160) as well as the characteristics of inter- and intra-semic
molecules at work within Réne Magritte’s painting La clef des songes (Hébert 2020:
160–168). Through these examples, we introduce relative mathematical formalisms
in order to provide a systematic description of the approach of structural semiotics to
the conceptualization of a seme as theminimal unit ofmeaning, and how semes form
the basis for larger emergent forms.

2 Analysis by classification

For Hébert, the cognitive act of analysis by classification is one that operates in a
similarmanner to the selector functionwe outlined in Equation (3). That is to say that
the classifying agent chooses which feature(s) the elements must have in order to be
part of the class, the values these featuresmust take, and the rules for evaluating and
determining membership (Hébert 2020: 205). In his Dispositifs pour l’analyse des
textes et des images (Hébert 2007), an earlier edition to An Introduction to Applied
Semiotics, he provides a sample analysis of the poem <<Quelle affaire!>> (“A Sorry
Business!”) (Vigneault 1998) (Figure 2) by the Quebec poet Gilles Vigneault (b. 1928).
The poem reflects on a highly charged environmental and political affair during the
1980s inwhich the actress Brigitte Bardot visited the Canadian icefloeswith a camera
crew to denounce the hunting of baby seals and the seal fur trade. The successful
campaign’s ramifications saw new policies that caused a sharp decrease in the
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harvesting of baby seals that caused an overall increase in the seal population which
in turn affected fish numbers, and thus the livelihood of local fishing communities.

Hébert proposes a tree diagram (Figure 3) based in essence on what Greimas
(1983: 123) identifies as the “simple opposition of immanence andmanifestation.” The
diagram presents a differentiation between a class (unshaded node) as an intension,
and an element (shaded node) as its extension. The tree is intended to also allow
for the identification ofmonadic and polyadic classification structures. Hébert thinks
of these as the difference between an element possessing a single class (monadic),
or adhering to many classes (dyadic, triadic, n-adic) (Hébert 2007: 166).

Figure 2: The poem <<Quelle
affaire!>> (“A Sorry Business!”) by
Gilles Vigneault (1998: 147–148),
translated by Hébert (2007: 167).
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But we can also think of Hébert’s monadic and polyadic structures firstly
within the realm of mathematical graph theory, and of finite directed graphs. This
re-contextualization allows us to utilize the notion of a path. That is, given a finite
directed graph (G, R), we call a path a finite sequence a0, …an(n ≥ 1) of elements
(vertices) in G for which (ai, ai+1) ∈ R for all i, such that 0 ≤ i ≤ n. This allows us to
subsequently introduce the notion of a finite rooted tree (Makinson 2020: 226).

Definition 2.1 (Finite rooted tree):We define afinite rooted tree as the directed graph
T = (G, R), where G is a set of vertices and R is a two place relation (ai, ai+1) over G.
We call the root of G an element a, in which ∀x ∈ G such that a ≠ x, there is a unique
path from a to x, but no path from a to itself.

Hébert’s monadic and polyadic structures are thus equivalent to the link-height in a
finite rooted tree. That is to say that when we set the root to level 0, a monodic
classification is a child of link-height 1, and a polyadic classification is a chid of
link-height that is greater than 1. Consider the following directed graphs A (left) and
B (right) that represent unlabelled finite rooted trees from Hébert’s example in
Figure 3:

Figure 3: Hébert’s (2007: 168) two disconnected finite rooted trees as a visualization of “Thematized
classification in << Quelle affaire!>>.”
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(4)

Here, Hébert’s tokens or elements are the colored vertices or leaves of the finite
rooted trees, such that for both A and B we have link-heights of greater than 1
from leaf to root: that is, a polyadic structure. But in terms of what Hébert calls
monoclassification and polyclassification, he argues that

one can distinguish between a ‘vertical’ polyclassification, which includes one or more
encompassing classes (wolf < canines (subclass) < mammal (class)), and a ‘horizontal’
polyclassification, which is made at the same level of generality (human > werewolf < canines).
The object being analyzed and/or the type of classification used in the act and/or the analysis
of this act may allow for only single classifications of a single unit, or may admit multiple
classifications. (Hébert 2007: 166)

Here, we can understand the distinction Hébertmakes between amonoclassification
and a polyclassification as the difference between a finite rooted tree and a complete
lattice.

Definition 2.2 (Complete Lattice): An ordered setL≔ (L, ≤) is a lattice, if for any two
elements x and y in L, the supremum (greatest element) x ∨ y, and the infimum (least
element) x ∧ y always exist. L is called a complete lattice, if the supremum ⋁X, and
the infinum ⋀X exist for any subset X of L. Every complete lattice L has a greatest
element, ⋁L, or the unit element, 1L, and a least element 0L, the zero element.

Remark 1:We see in (4) that afinite rooted tree is a structure inwhich each node of the
tree has exactly one parent, and thus no two diverging paths ever meet – Hébert’s
monoclassification. In contrast, a complete lattice is a structure inwhichany twonodes
can be traced to greatest element or least element, which equates towhatHébert calls a
polyclassification and the notion of classes and subclasses. Consider the following
complete lattice A′:

for which we see that the least upper bound or join between the elements i and k
is the element τ, while the greatest lower bound or meet is the zero element. In fact
for any two elements inA′ there always can be found ameet or join in the formof two
paths converging at the infimum 0A′( ) or supremum 1A′( ).
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(5)

In the following sections we will introduce the mathematics of lattice theory in
order to move from finite rooted trees to ordered concept lattices. The advantage
of this recontextualization is that we can succinctly express semiotic notions such
as Hébert’s monoclassification and polyclassification using binary tables and
their accompanying concept lattices, concept/subconcept relations, preconcepts
constructions as well as attribute dependencies and attribute implications.

2.1 Formal concept analysis

Formal concept analysis (FCA) is a branch of mathematics pioneered by Rudolph
Wille (1982) as a means in which to extend lattice theory. As Ganter and Wille (1999)
contend, the basic notions of FCA center on a formal context and its formal concepts.
These notions were developed in order to develop a system for formalizing
“knowledge discovery” within any domain (Stumme et al. 1998: 451). FCA is a direct
mathematization of ‘conventional’ concept through lexical fields such that concepts
themselves are considered

cognitive acts and knowledge units potentially independent of language. Only if they are used
to give meaning to linguistic expressions, they become so-called word concepts which are
conventualized and incorporated. The meanings of words for an individuum presuppose
conceptual knowledge of that individuum which turns linguistic expressions into signs for
those concepts. (Wille 2005: 6)

Like Hébert’s recognition of the importance of considering how an intension of a
term determines its extension, FCA provides a formalized method in which to study
what Hébert calls classes and sub-classes, though in FCA these are known as
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superconcepts and subconcepts. Indeed the superconcept/subconcept relation in
FCA was primarily influenced by how Frege (1952) identified the dual relationship
between intension and extension and how each generates the other such that
“the extension is the class of things in the world for which the intension is a true
description” (Wilson and Keil 2001: 177). Below we introduce FCA through a number
of standard definitions (Ganter and Wille 1999).

Definition 2.3 (Formal Context): A formal context, denotedK, is a triple, (G,M, I), and
consists of two disjoint sets; G, a set of objects, andM, a set of attributes as well as an
incidence relation, I. An object g that has an attributem, is denoted as gIm or (g,m) ∈ I.

Definition 2.4 (Subcontext): If K≔ (G,M , I) is a formal context, and if H ⊆ G and
N ⊆ M, then Kn ≔ (H,N , I,H × N) is a subcontext of K.

Definition 2.5 (Apposition): Two formal contexts, K1 ≔ (G,M1, I1) and
K2 ≔ (G,M2, I2), contain the same set of objects, G, such that M1 ∩ M2 = ∅. The
apposition of K1 and K2 is denoted as Kσ , such that:

K1 |K2 ≔ (G,Ṁ 1 ∪M
̇

2, I
̇

1 ∪ I
̇

2), (6)

for which M
̇

j ≔ {j} ×Mj and I
̇

j ≔ {((j, g), (j,m)) | (g,m) ∈ Ij} for j ∈ {1, 2}.

Let us first consider the formal context Kσ ≔K1 |K2 given in Figure 4. Here we use
Hébert’s elements, or leaves from his finite rooted trees of << Quelle affaire!>> in
Figure 3 to construct G, a set of objects for which a “×” in the binary table of Kσ

indicates a incidence relation to a set of attributesM that correspond to what Hébert
calls a collection of classes. In order to formalize the incidence relation of gIm inKσ ,
we relabel the classes so that they reflect in a similar manner how Greimas and
Courtés (1979: 29–30) discuss classemes as “those semes which are recurrent in the
discourse and which guarantee its isotopy.”

We construct Kσ through two contexts K1 and K2 that share the object set G,
though split Hébert’s classes into M1 and M2 such that M1 ∩ M2 = ∅. This follows
Hébert’s two original disjunct finite rooted trees as classifications of the oppositional
classes: //culture// and //nature//. FromKσ and its subcontextsK1 andK2 we can see
that subsets of objects may share attributes and thus be considered formalized
structures that form “cognitive acts and knowledge units potentially independent of
language” (Wille 2005: 6). These units are called formal concepts and given someunits
may be contained in other units, leads to the notion of a partial order on a context
and a hierarchy of concepts.
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Figure 4: The formal context Kσ as the apposition of formal contexts K1 andK2, whose objects and
attributes are sourced fromHébert’s (2007: 168) two disconnected finite rooted trees that visualize the
“Thematized classification in << Quelle affaire!>>” (c.f. Figure 3). The dashed line indicates the
articulation ofM1 andM2 such thatM1\coloneq {is an actant, is from culture, is a predator, is a person,
preys on seals, preys on fish, is an anti-predator}, and M2\coloneq {is from nature, is an animal, is
terrestrial, is aquatic, is a fresh water habitat, lives in fresh water, lives in salt water, is prey, is a seal, is
a fish}.
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Definition 2.6 (Formal Concept): A pair (A, B), with A ⊆ G and B ⊆ M, is a formal
concept of a formal context, K. We call A the extent, and B the intent of the formal
concept, such that A↑ = B and B↓ = A. The set of all formal concepts of the formal
context K is notated as B(G,M , I), for which we define the incidence relation as
I = ⋃{A × B | (A,B) ∈B(G,M , I)}.

Remark 2: Given A ⊆ G, the derivation operator ↑ yields:

A↑: = {m ∈M | ∀ g ∈ A : gIm}, (7)

or the set of attributes common to the objects in A, while the operator ↓ yields:

B↓: = {g ∈ G | ∀m ∈ B : gIm}, (8)

which is the set of objectswhich have all attributes inB givenB⊆M. Thus (A↑↓,A↑) and
(B↓, B↓↑) are always concepts, and A↑↓ is the smallest extent containing A. A contextK
thus always contains both a set of all extents, denotedU(G,M , I) and set of all intents
I(G,M , I). The intersection of intents is always another intent such that given an
index set T, for each t ∈ T and At ⊆ G, then

⋃
t∈T
At( )↑

= ⋂
t∈T
A↑
t , (9)

which is also true of attributes and the intersection of extents.

Definition 2.7 (Superconcept/Subconcept): Given a pair of formal concepts, (A1, B1)
and (A2, B2), we say (A1, B1) is a subconcept of (A2, B2) if A1 ⊆ A2 or dually (B2 ⊆ B1). This
is formalized as the relation: (A1, B1) ≤ (A2, B2):⇔A1 ⊆ A2(⇔B1 ⊇ B2). The pair (A2, B2) is
thus a superconcept of (A1, B1). The set of all formal concepts of K, together with
the order relation, ≤, is a concept lattice which is denoted as B (K).

From our formal contextKσ , consider the following two concepts, c1 and c2 found in
the set of all formal concepts B(K1):

c1 ≔ {baby seal, seal}, {preys on fish, is a predator, is an actant}( ), (10)

c2 ≔ {hunter, fisherman,baby seal, seal}, {is a predator, is an actant}( ). (11)

We can see that given c1 contains objects that are a subset of the objects of c2, we say
that c1 ≤ c2, or that c1 is a subconcept of c2. This is more readily seen through a Hasse
diagram found in Figure 5, and Figure 6. Herewe can visualize the order (≤) onB(Kn)
that generatesB (Kn).Wefind that the edges of a diagram that connect objects (whose
labels are shaded and sit below vertices) to other vertices, some of which contain
attributes (whose labels sit above vertices). The concept c1 has an intent (upwards
connecting edges) that we can denote using the derivation operator as:

Concept lattice formalisms 13



{baby seal, seal}↑ ≔ {preys on fish, is a predator, is an actant}, (12)

while for c2 this is:

{hunter, fisherman, baby seal, seal}↑ ≔ {is a predator, is an actant}, (13)

given that the vertices where all objects of c2 meet through upwards paths are the
attribute vertices {is a predator} and {is an actant}. Indeed, given that B (Kσ) is
isomorphic to a complete lattice L (Definition 2.2) through Ganter and Wille’s (1999:
20–21) proof of their basic theorem on concept lattices via the mappings γ͞ : G→ L
and μ͞ :M → L, we see there exists two types of concepts: object concepts and attri-
bute concepts.

Definition 2.8 (Object Concept/Attribute Concept): Let g↑ be the object intent {m ∈M} |
gIm} given g ∈ G, andm↓ be the attribute extent {g ∈ G | gIm} givenm ∈M. The object
concept (g↑↓, g↑) is written as γ{g} and the attribute concept (m↓,m↓↑) as μ{m}. Given
the condition: gIm⇔γ{g} ≤ μ{m} we can also assert A = {g ∈ G | γ{g} ≤ (A, B)}, and
B = {m ∈ M | (A, B) ≥ μ{m}}

Figure 5: Hasse diagram of B (K1).
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There is then some relation betweenwhat Hébert (2007: 166) calls monoclassification
and polyclassification within his finite rooted trees to object concepts and attribute
concepts within a complete concept lattice. Consider the following concepts from
B (K2) (Figure 6):

γ{Newf ’ndland}: = ( Newf ’ndland, land,
stone, sand{ }, {is terrestrial, is fromnature}), (14)

μ{is terrestrial}: = ( Natashquan,Newf ’ndland,
land, stone, sand{ }, {is terrestrial}). (15)

What Hébert calls monoclassifications are concepts in the form μ{m}≔(m↓,m↓↑) that
have the smallest (empty) intents and largest extents: e.g., μ{is an actant} inB (K1)
and μ{is fromnature}, μ{is terrestrial} ∈B (K2). Duly, polyclassifications are any
concepts that are subconcepts of these superconcepts such that | A↑ | > 1 for a concept
in the form (A, B).

Figure 6: Hasse diagram of B (K2).
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In the case of the concepts γ{Newf’ndland}, γ{land}, γ{stone}, γ{sand}, we also
have what Hébert (2007: 169) identifies as the isotopy /mineral/ given their intent has
the attributes {is terrestrial, is from nature}. Similarly, what Hébert (2007: 169)
identifies in <<Quelle affaire!>> as the significance of the text “ladywalking on the ice
floe” as a mediating term to the oppositional semes /land/ and /sea/ is expressed in
B (K2) through the superconcept/subconcept relation of μ{is from nature} ≤ (G, G↑),
where {land, sea} ∈ γ{is fromnature}, and {lady} is an element of the conceptwith the
largest extent (G, G↑), or the supremum.

2.1.1 Nested lattices

Hébert also identifies in Vigneault’s poem the potential of classification to compare
human predation and seal predation, and the parallel “between the recursivity of
predations (man hunts the seal who hunts the fish) and the recursivity in the
transmission of information (fish A tells B who tells C, ‘and so on down the line’)”
(Hébert 2007: 169). In order to examine this aspect within the context of FCA we can
firstly lookmore closely at the relation between the sub-latticesB (K1) andB (K2) in
terms of G, and in respect to the complete lattice formed from Kσ . This is achieved
this through a tensor product of B (K1) and B (K1) which Ganter and Wille (1999)
proved is isomorphic to a direct product of formal contexts, which is to say more
generally that:

B ∏
t∈T
Kt( ) ≅ ⊗

t∈T
B (Kt). (16)

Definition 2.9 (Direct Product): The direct product of two formal contexts, K1 ≔
(G1,M1, I) and K2 ≔ (G2,M2, I2) produces the formal context K1 ×K2 ≔ (G1 ×
G2,M1 ×M2,▽) in which (g1, g2)7(m1, m2): ⇔((g1, m1) ∈ I1 ∧ (g2, m2) ∈ I2).

Definition 2.10 (Tensor Product): The tensor product of two complete lattices L1 and
L2 is the formal concept lattice of the direct product of their contexts, that is, L1 ⊗
L2 ≔B (L1 × L2,L1 × L2,▽) such that (x1, x2)7(y1, y2): ⇔(x1, ≤ y1) ∧ (x2 ≤ y2).

In Figure 7 we give the Hasse diagram of the tensor product of the two complete
sublattices of B (Kσ) such that the diagram expresses B (G,M1, I ∩ G ×M1) as the
outer lattice, for which each vertex containsB (G,M2, I ∩ G ×M2). In order to show
which objects and their associated intents in K2 intersect with K1, we shade these
nodes and omit labels (c.f. with Figure 6).

The resultant tensor product of sublattices gives a clear indication as to the
nature of Hébert’s oppositional construct of finite rooted trees based on the nature/
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culture distinction and the recursivity of predations. We can see this firstly through
the fact that the intent (colored vertices) of the object subset {baby seal, seal}
(//nature//) inB (K1) is part of the extent of the concept μ{preys on fish} inB (K2),
and that this concept has the object {fisherman} (//culture//) in its extent. This gives
the relation: γ{fisherman} ≤ μ{preys on fish}, which further shows that both
γ{fisherman} and γ{baby seal, seal} have the attribute {is a predator} in their
intents. We also see fromB (K2) and the vertices inB (K1) ⊗B (K2) described by
the attributes {is an actant} and {preys on fish}, that both the objects {baby seal,
seal} and the subset of objects that contains the species of fish, {smelt, sole, …,
bullhead}, intersect in their intent at {is prey, is an animal, is aquatic, is from
nature}. While inB (K2) both these object subsets are equal in terms of |{g}↑| (the

Figure 7: B (K1) ⊗B (K2).
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cardinality of their intents), within B (K1) ⊗B (K2) because {smelt, sole, …
,bullhead}↑ = {is an actant}, and {baby seal, seal}↑ = {preys onfish, is a predator, is an
actant}, we can think of γ{baby seal, seal} as more specific, and thus a key theme in
<< Quelle affaire!>>.

3 Semic analysis

In addition to FCA’s parallels to Hébert’s “analysis by classification,”we can also use
it to visualize aspects of Rastier’s (1997) “semic analysis.” Rastier first proposed the
approachwithin his theoretical framework of interpretive semantics, forwhich it can
be described as the identification in a text or an image of semes and how they form
larger collections as isotopies and molecules. Semic analysis thus seeks to determine
not only the structures of such isotopies, but how semes relate to each other and
iterate themselves to formmolecules. Hébert (2020: 144) notes that semic analysis is a
second generation synthesis of “European structural semantics as developed in the
wake of Bréal and Saussure, then Hjelmslev, Greimas, Coseriu and Pottier.”

Hébert develops a particular methodology for semic analysis that allows
Rastier’s larger theoretical framework to be easily applied to source texts. The
method centers on the creation of various types of tables: heuristic semic tables,
analytical semic tables and comprehensive semic tables. We focus on the analytical
semic table, an example found below:

(17)

The table is primarily used in order to record actualizations of a given seme in a text
that is intrinsic, or of interest for analysis.

If we reduce an analytical semic table further and ignore the Justification
column as an annotation, then we have a mapping to a context K given that
semes can be considered as m ∈ M and signifieds as g ∈ G for which a Boolean as
gIm indicates a signified g has as attribute an m. Consider the context K3 and a
visualization of its complete concept lattice in Figure 9.

The context K3 is a mapping from an analytical semic table Hébert (2020:
159–160) uses for an application of semic analysis on the isotopy /navigation/ in the
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poem The golden ship from 1899 by Émile Nelligan (Figure 8). Our context K3 is
clarified, that is to say that for any object g, h ∈ G for which g↑ = h↑, it always follows
that g = h, and dulym↓ = n↓ impliesm = n such that (m, n) ∈M. Our clarified context
K3 thus gives object equivalences, that is, signifiers are grouped according to a
shared intent.

The concept latticeB (K3) describes a structurewe associate to the classification
of semes Hébert gives regarding the isotopy /navigation/. Consider the following six
formal concepts as significant semic structures that delineate intent and extent-
relative concepts:

c1: = (G, {/navigation/}), (18)

c2: = ( vint, azure, treasures,
Gulf ,depths,Cypine{ }, actualized seme,

afferent seme,/navigation/
⎧⎪⎨⎪⎩

⎫⎪⎬⎪⎭), (19)

c3: = (

sunk, saliors,masts, seas,
prow, reef , ocean, shipwreck,
keel, Ship, flancs, ship, siren,

tempe
̂
te},

actualized seme,
inherent seme,/navigation/

⎧⎪⎨⎪⎩
⎫⎪⎬⎪⎭),

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩
(20)

c4: = ( G \ {abyss}{ }, actualized seme,/navigation/{ }), (21)

Figure 8: The poem The golden ship
by Émile Nelligan (1960).
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c5: = ( abyss{ }, /navigation/{ }), (22)

c6: = (∅,M). (23)

The largest concept c1 is the isotopy itself as a descriptor of all objects (signifiers),
with subconcepts below it that contain various subsets, while the smallest concept c5
contains the single object {abyss} such that c5 ≤ c1. The lattice provides what Greimas
and Courtés (1979: 163) identify as the minimal context for an isotopy through a
“joining together of at least two semic figures.” InB (K3) these figures are embodied
in the afferent/inherent semic axis of c2 − c3 and their intersection at {actualized
seme, /navigation/}, which is what Hébert (2020: 146) notes as the “activation” of the
context given there are no neutralizations or virtualizations present in the poem.

3.1 Preconcept lattices

We can further consider the example of the generalization of formal concepts as
preconcepts. These smaller structures are subconcepts, and allow for the identifi-
cation of the smallest semantic units associated to sentences (line combinations).
Burgmann and Wille (2006: 80) first described preconcepts as a means in which to
“mathematize the notion of a ‘preconcept’ which is used in Piaget’s cognitive psy-
chology to explain the developmental stage between the stage of senso-motoric
intelligence and the stage of operational intelligence.”

Definition 3.1 (Preconcept lattice): We define a preconcept of a formal context (G,M,
I) as the pair (A, B) such that A ⊆ G, and B ⊆M, and A ⊆ B↓(⇔ A↑ ⊇ B), which is thus a
generalization of the definition of a formal concept given in Definition 2.6. The set of
all preconcepts of a formal context (G,M, I) is denoted byV(G,M , I). Preconcepts are
naturally ordered through

(A1,B1) ≤ (A2,B2)⇔ A1 ⊆ A2 ∧ B1 ⊇ B2, (24)

for which the ordered set ofV (G,M , I)≔ (V(G,M , I), ≤) is a complete lattice called
the preconcept lattice such that:

⋀
t∈T
(At,Bt) = ⋂

t∈t
At, ⋃

t∈T
Bt( ) and ⋁

t∈T
(At,Bt) = ⋃

t∈t
At, ⋂

t∈T
Bt( ), (25)

for all (At,Bt) ∈V(G,M , I)(t ∈ T).

Given that preconcepts are smaller units of meaning according to the condition
A ⊆ B↓(⇔ A↑ ⊇ B), we firstly apply an operatorV onK3 from The golden ship in order
to generate all preconcepts. We call V(K)) a derived formal context such that:
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V(K)≔ (G∪̇ M ,G∪
̇
M , I ∪ (≠ \ G ×M). (26)

Wille (2004: 5) has previously proved that

V (G,M , I) ≅B (G∪̇ M ,G∪
̇
M , I ∪ (≠ \ G ×M)). (27)

That is, a complete protoconcept lattice is isomorphic to the lattice of a derived
context.

Consider then the derived context V(K3) we provide in Figure 11. What we will
call the atoms of its corresponding preconcept lattice B (V(K3)) given in Figure 10
are definedmore generally as the preconcepts (∅,M \{m}) such thatm ∈M as well as
the preconcepts ({g}, M) such that g ∈ G and {g}↑ = M. The coatoms are duly the
preconcepts (G \{g}, ∅) such that g ∈ G as well as the preconcepts (G, {m}) such that
m ∈ M and {m}↓ = G (Burgmann and Wille 2006: 81). We call the set of all atoms in a
complete lattice J and the set of all coatoms M.

There exist preconcepts that are the images of subsets of J and M because
atoms and coatoms are described through set complements. We indicate these
images through the condition on a complete lattice L, where a is an element of
A ⊆ J (L), and b is an element of B ⊆M(L) such that:

↖a ≔⋁{x ∈ L | x ≱ a}, (28)

↙b≔⋁{x ∈ L | x ≰ b}. (29)

Here, a prototypic object that we denote as ↖ a, is the image of a coatom, or the set
complement of a single attribute in M, while a characteristic attribute as ↙ b, is an
image of a set complement of a single object in G. Semantically we can think of these
elements as the Boolean operations of negation “¬” on a formal concept, or an
opposition “⌙” (Wille 2004: 2–3):

¬(A,B) ≔ (G \ A, (G, \A)↑), (30)

(31)

For example, the concept formed from the attribute ‘↙abyss’ in B (V(K3)) is
equivalent to what Greimas and Courtés (1979: 60–61) call contradiction. Here, they
describe ¬/abyss/ /abyss/ as an assignment of the binary present/absent.
Regarding↖-images, we use the example of ‘↖afferent seme,’which is an opposition
of the afferent seme type. Here an apposition is equivalent to what Hébert (2020: 146)
describes as the virtualization of a seme: that is, an opposition to its actualization.
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But from these conditions we also have subpreconcepts whichwe understand as
representing the smallest units of meaning. Consider the first sentence across lines
1–2 of The golden ship in light of Hébert’s isotopy /navigation/:

There was a fine ship, carved from solid gold

With azure reaching masts, on seas unknown.

Let the set R≔coloneq {azure, ship, masts, seas} be a collection of signifieds in G of
which we gave inK3 (Figure 9a), and which we associate to lines 1–2 of the poem. In
B (V(K3)), there exists a subpreconcept that we label p1 in Figure 10 such that

p1 ≔ (
G \ {abyss},
↖inherent seme,
↖afferent seme

⎧⎪⎨⎪⎩
⎫⎪⎬⎪⎭,

/navigation/,↙abyss,
actualized seme{ }). (32)

R is embedded in p1, such that its intent is the subset {actualized seme, ↙abyss,
/navigation/}. As the smallest preconcept formed through R, p1 is a coatom that
semantically implies a type of negation of the signified ‘abyss’ in addition to per-
taining to the features of an {actualized seme} and the signified as an element of the
seme as isotopy /navigation/ (Figure 10). It is a subpreconcept to the preconcepts
formed through the attributes {actualized seme}, { ↙abyss}, {/navigation/}. This
shows the isotopy /navigation/ contains two large concepts μ{↙abyss} and μ{actu-
alized seme} as features or preconceptual planes (Figure 11).

3.2 Inter- and intra-semiotic isotopies

Hébert (2020: 163) also presents semic analysis through reduced analytical semic
tables for tracking isotopies that occurwithin RéneMagritte’s 1930 oil paintingLa clef
des songes (Key of Dreams). Magritte’s painting (Figure 12) is set out in a 6 × 2 grid in
which various commonly encountered objects are depicted with labels that describe
other objects that are seemingly unconnected. Hébert utilizes the example as a
means to distinguish between the notion of intra-semiotic repetition, that is, when a
molecule or semic iteration is for example limited to a text, to that of inter-semiotic
repetition, or when a molecule or isotopy can be found activated both within a text
and an accompanying image.

In order to explore these notions in regards to FCA, we provide amap of Hébert’s
semic table to a pair of complete contexts visualized in Figures 13 and 14. These
ordered concept lattices demarcateMagritte’s La clef des songes into formal concepts

22 Fowler



after Hébert’s table for whichB (K4)maps images (tokens), andB (K5)maps words
(signifiers).

The Hasse diagrams provide a way in which to quickly locate intra-semiotic
isotopies as semic molecules given that according to the definition by Rastier (2016:
499–500), a molecule is simply “a stable grouping of semantic features” that is
structured in some way through a collection of semes. As an example consider the
following attribute concept in the form (B↓, B) from B (K4) (Figure 13):

{Image 3 (hat), Image 2 (shoe)}, {/water protection/, /black/, /clothing/}( ), (33)

which we equate to the semic molecule /water protection/ + /black/ + /clothing/
through its tokens, the images of a hat and a shoe in La clef des songes. The intent of
these two tokens yields:

Figure 9: Formal context K3 and corresponding Hasse diagramB (K3) of Hébert’s semic analysis of
the isotopy /navigation/ from Émile Nelligan’s The golden ship.
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({Image 3 (hat), Image 2 (shoe)})↑ ≔

/water protection/, /black/,
/clothing/, /hot/, /familiar/,
/solid/, /low/, /curved/,
/container/, /liquid/, /culture/,
/inedible/, /protective/,
/concrete/, /inanimate/

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭
. (34)

Similarly in B (K5) (Figure 14) we have:

Figure 10: Hasse diagram of the preconcept lattice B (V(K3)).
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{Word 4“ ceiling”,Word6“desert”}, {/container/, /hot/}( ), (35)

with the following intent:

({Word4“ ceiling”,Word 6“desert”})↑ ≔
/container/, /hot/, /low/,
/solid/, /NA/, /straight/,
/inanimate/, /nature/,
/brightness/, /concrete/

⎧⎪⎪⎪⎨⎪⎪⎪⎩
⎫⎪⎪⎪⎬⎪⎪⎪⎭), (36)

as the semic molecule /container/ + /hot/ with signifiers “ceiling” (la Plafond) and
“desert” (le Désert). But given we also have object concepts in the form (A, A↑) such as
found in (34) and (36) means that for large formal contexts with large intents, we
would ideally like to identify subsets ofM that are informed through a collection of
primary attributes that are dependent on a secondary attribute(s). This would allow
for a stricter definition of Rastier’s notion of the stability of a semicmolecule through
a reduction in the attribute set via a distinction between μ{m} concepts that contain
equivalences (i.e., m≅m′ | (m, m′) ∈ M), and γ{g} concepts whose intents may not
readily describe complete semic molecules – i.e., there may be other tokens or sig-
nifiers that satisfy parts of the attribute subset.

Figure 11: The derived formal context of V(K3)).

Concept lattice formalisms 25



3.3 Attribute dependency formulas

In order to explore inter-semiotic isotopies between B (K4) and B (K5) we
introduce Bĕlohlévek and Sklenár̆’s (2005) attribute-dependency formulas as a
method for rule-based attribute reduction and concept exploration within each
lattice.

Figure 12: RenéMagritte La clef des songes (Key of Dreams), oil on canvas, 1930. Thework comprises of 6
images (tokens) each accompanied by aword (signifier). Image 1 (top left): egg; word 1: l’Acacia (Acacia).
Image 2 (top right): shoe; word 2: la Lune (moon). Image 3 (middle left): hat; word 3: la Neige (snow).
Image 4 (middle right): candle; word 4: le Plafond (ceiling). Image 5 (bottom left): glass; word 5: l’Orage
(storm). Image 6 (bottom right): hammer; word 6: le Désert (desert).
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Definition 3.2 (Attribute-dependency formula): A formal concept (A, B) in (G, M, I)
satisfies an attribute dependency formula (ADF), φ in the formm ⊑m1 ⊔⋯ ⊔mn ifm,
…,mn ∈ B. We letm be the secondary attribute andm1,…,mn be primary attributes.
Given a formal concept (A,B) ∈B (G,M , I), we denote (A, B)⊧φ to mean that (A, B)
satisfies φ.

Figure 13: Hasse diagram of B (K4).
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Consider the set C ≔ {φ1,φ2} as a subset of all AFDs, in which we associate φ1 to
B (K4), and φ2 to B (K5) such that:

φ1: = /white/ ⊑ (/hot/ ⊔ /liquid/) ⊔ (/liquid/ ⊓ /damgeable/), (37)

φ2: = /white/ ⊑ (/absence of water/ ⊔ /cold/ ⊔ /inanimate/)⊔ (38)

(/solid/ ⊓ /familiar/). (39)

Here, we will to focus on the seme /white/ and the nominated dependent semes as
they associate to the tokens (objects) {Image 1 (egg)} and {Image 4 (candle)} inB (K4)
as well as signifiers {Word 3 ‘snow’ la Neige} and {Word 2 ‘moon’ la Lune} inB (K5).
As Bĕlohlévek and Sklenár̆ (2005: 180) note, in general, we can consider expressions

Figure 14: Hasse diagram of B (K5).
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within ADFs as terms over B in the form y ⊑ t(y1, …yn). Here, we designate each
attributem ∈M as a term, in addition to identifying terms through Booleans such as
(t1 ⊔ t2). For example, we see in (38) that (/solid/ ⊓/familiar/) can be expressed as/
concrete/(/solid/ ⊓/familiar/) given {/solid/, /familiar/}↑ = {/concrete/}.

Figure 15: Formal context KθC and corresponding Hasse diagram B (KθC).
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Because the seme (attribute) /white/ is common to both concept lattices, we use
the ADFs above in order to construct a dependency, and thus seek out concepts in
both lattices for which given the seme /white/, we also expect in φ1 the molecule
/concrete/(/liquid/ ⊓/damageable/) as well as the molecule /concrete/(/solid/
⊓/familiar/) in φ2. We can then express the ADFs as the finite rooted trees T(φ1):and
T(φ2):

(40)

(41)

We denote the formal contexts built from these trees asKφ1
andKφ2

whose attributes
are subsets of K4 +K5. Here we mean that for each term t in C there exists a
corresponding attribute m in (M4 ∪ M5). In order to model concepts that are asso-
ciated to both tokens and signifiers in Key to Dreams, we glue these two subcontexts
through a subposition.
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Definition 3.3 (Subposition): Two formal contexts, K1 ≔ (G1,M , I1) and
K2 ≔ (G2,M , I2), contain the same set of attributes, M, such that G1 ∩ G2 = ∅. The
subposition of K1 and K2 is denoted as Kθ, such that:

Kθ ≔ (Ġ 1 ∪ G
̇

2,M , I
̇

1 ∪ I
̇

2), (42)

for which G
̇

j ≔ {j} × Gj and I
̇

j ≔ {((j, g), (j,m)) | (g,m) ∈ Ij} for j ∈ {1, 2}.

In Figure 15 we give the clarified context KθC of the subposition of contexts Kφ1

and Kφ2
as well as its corresponding concept lattice. The lattice shows both semic

molecules that are intra-semiotic and inter-semiotic in Key to Dreams. Consider the
following intra-semiotic concept within the set of signifiers in the form (A, B):

c1 ≔ ( Word 2:‘moon’ la Lune,
Word 3:‘ snow’ la Neige{ }, /cold/, /inanimate/,

/familiar/, /solid/,
/white/, /concrete/

⎧⎪⎨⎪⎩
⎫⎪⎬⎪⎭), (43)

and its corresponding intra-semiotic concept within the set of tokens:

c2 ≔ ( Image 4: (candle),
Image 1: (egg){ }, /hot/, /liquid/, /damageable/,

/familiar/, /solid/, /white/,
/concrete/

⎧⎪⎨⎪⎩
⎫⎪⎬⎪⎭). (44)

These two intra-semiotic isotopies are themselves subconcepts to formal concepts
formed at the nodes labelled with the attributes {/inanimate/} and {/damageable/,
/liquid/} in B (KθC):

c3: = (
Image 4: (candle),
Word 2:‘moon’ la Lune,
Word 3:‘ snow’ la Neige

⎧⎪⎨⎪⎩
⎫⎪⎬⎪⎭,

/inanimate/, /familiar/,
/solid/, /white/, /concrete/{ }), (45)

c4: = (
Image 4: (candle),
Image 1: (egg),
Word 3:‘ snow’ la Neige

⎧⎪⎨⎪⎩
⎫⎪⎬⎪⎭,

/liquid/, /damageable/,
/familiar/, /solid/, /white/,
/concrete/

⎧⎪⎨⎪⎩
⎫⎪⎬⎪⎭). (46)

The formal concepts c3 and c4 are thus two inter-semiotic molecules as super-
concepts (c1 ≤ c3, and c2 ≤ c4) that cover a subset of signifiers and tokens in Key to
Dreams. These two molecules have a greatest lower bound as the subconcept c0
(Figure 15):

c0 ≔ ( Image 4: (candle),
Word 3:‘ snow’ la Neige{ },

/inanimate/,
/damageable liquid/,/familiar/, /solid/,/white/, /concrete/

⎧⎪⎪⎪⎨⎪⎪⎪⎩
⎫⎪⎪⎪⎬⎪⎪⎪⎭), (47)
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which we contend is the smallest and most generalized expression of the inter-
semioticmolecule inKey to Dreams obtained through an ADF restriction on the seme
{/white/}.

3.4 Attribute implications

The use of ADFs to assist in constructing subconcept/superconcept relations between
molecules also points towards how we can parse implications from a concept lattice
in order to establish /seme/ → /seme/ structures that define a semic molecule’s
structure.

Definition 3.4 (Attribute Implication): An implication over M is denoted as X → Y,
where X, Y ⊆M. An implication that is valid in K is denoted as K ⊧ X → Y , if X↓ ⊆ Y↓,
that is, each object inK that possesses all attributes in X, also possesses all attributes
in Y. An implication set, P, is valid in K if all implications in P are also valid in K.

Although Hébert does not discuss implications directly within Rastier’s framework
of interpretive semiotics, Greimas and Courtés (1979: 152) equate implications to
presuppositions. That is, they are envisaged as “logically prior to implication: the ‘if’
would notfind its ‘then,’ if the latter did not already exist as the presupposed.”Within
the framework of FCA, implications are element/subset relations that emerge from
the intent of the formal contexts.

For example, in the concept lattice B (KθC) (Figure 15), the two inter-semiotic
molecules we identified as c3 and c4 contain the following attribute (seme) implica-
tions respectively:

{/absence of water/, /cold/}→ {/inanimate/}, (48)
{/hot/}→ {/damageable/, /liquid/}, (49)

such that both sets of implications also imply {/white/}. But we can further cross-
reference these implications as they pertain more generally to the lattices B (K4)
(Figure 13) and B (K5) (Figure 14) to find further implications such as:

({/hot/}→ {/solid/, /low/}) ∈B (K4), (50)

({/absence of water/}→ {/weather/, /nature/}) ∈B (K5). (51)

We also find from our earlier example in Equation (33) of the semic molecule /water
protection/ + /black/ + /clothing/ from the tokens {Image 3 (hat), Image 2 (shoe)} that:

{/water protection/, /black/, /clothing/}→ {/container/, /liquid/, /hot/}. (52)
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4 Conclusions

In this article we have introduced various mathematical formalisms to describe
semiotic structures within the framework of “analysis by classification” and “semic
analysis.” We firstly introduced Hébert’s disconnected finite rooted trees for the
description of thematized classification in Vigneault’s <<Quelle affaire!>>, and by
proposing structure-preserving maps to the formal contexts K1 and K2 and their
ordered concept lattices, we introduced the utility of FCA for visualizing and
reasoning on semiotic structures.

We showed in <<Quelle affaire!>> how Hébert’s notion of monoclassification
equates to superconcepts in the concept latticesB (K1) andB (K2) in the form μ{m}
≔(m↓, m↓↑} that have small intents (i.e., | A↑ | = 1) and large extents. Duly,
polyclassifications equate to subconcepts under the condition | A↑ | > 1 for any formal
concept (A, B). This also led us to utilize the tensor product of lattices to generate
B (K1) ⊗B (K2) to track the recursivity of predations and oppositional dynamics
between the semantic classes of //nature// and //culture//. Here we showed that
in <<Quelle affaire!>>, the intersection between these semantic classes is readily
visualized in the nested lattice through the activated concepts γ{fisherman}
(//culture//) and γ{baby seal, seal} (//nature//) given they share an intent that con-
tains the attribute {is a predator}.

This led us to further consider the structure of isotopies in The golden ship by
Émile Nelligan. Here, we used FCA to firstly map Hébert’s analytic semic table of the
poem to a formal context K3 and its accompanying concept lattice. Using the lattice
we identified important formal concepts of the isotopy /navigation/, in particular,
an afferent/inherent seme axis associated to the concepts c1 and c2, and their
intersection at the attributes {actualized seme, /navigation/}, which equates to
what Hébert calls an activation within the narrative plane. We then introduced
preconcept lattices via the derived formal contextV(K3)) and the conditionA⊆ B↓(⇔
A↑ ⊇ B), and showed how the notion of negation (¬) and opposition [Ieqn2] within
preconcept lattice constructions mirror what Greimas identifies as contradiction
and Hébert identifies as virtualization.

Our final application of FCA considered Hébert’s analysis of inter- and
intra-semiotic molecules within Réne Magritte’s La clef des songes (Key of Dreams).
We constructed the formal contexts K4 and K5 and their accompanying concept
lattices from an analytic semic table forwarded by Hébert in order to examine
Rastier’s notion of stability of semantic features within a set of tokens (images) and
signifiers (words) within La clef des songes. In order to formalize the structure of
inter- and intra-semioticmoleculeswithin the artwork, we introduced ADFs in order
to track attribute relations. We then used the concept lattice B (KθC) as a means to
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visualize both the intent and extent of the two types ofmolecules built from attribute
dependencies of the seme /white/. The concept lattice visualized the molecules both
in the domain of the signifiers and tokens as well as their intersection at the objects
{Image 4: (candle)} and {Word 3: ‘snow’ la Neige}. The use of ADFs also highlighted
how attribute implications within our constructed concept lattices point towards
what Greimas and Courtés call presuppositions between semes.

We consider these insights and formalisms as scaffolds to the discourse offered
by Rastier and Hébert regarding semic analysis and analysis by classification,
which in turn has highlighted how their approach closely alignswith the original aim
of the Greimas semiotics project. That is to say that for Greimas, structural semiotics
is a method concerned with a rigor and precision that is expressed through
a mathematic-like terminology which can generate formalisms as well rules
that identify structural equivalences. We have sought to identify with these same
concerns in this article through extending these abstractions by drawing directly
from the language of mathematics. But contrary to a desire to obfuscate, our
motivation has been to provide a syntax for an interdisciplinary methodology that
unites important previous contributions in the fields of structural semiotics and
lattice theory in the pursuit of a theory of semantics beyond textual linguistics.
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